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Abstract

Since Sparse Nonnegative Matrix Factorization (SNMF) method can control the sparsity of
the decomposed matrix, and then it can be adopted to control the sparsity of facial feature
extraction and recognition. In order to improve the accuracy of SNMF method for facial
feature recognition, new additive iterative rules based on the improved iterative step sizes are
proposed to improve the SNMF method, and then the traditional multiplicative iterative rules
of SNMF are transformed to additive iterative rules. Meanwhile, to further increase the
sparsity of the basis matrix decomposed by the improved SNMF method, a threshold-sparse
constraint is adopted to make the basis matrix to a zero-one matrix, which can further
improve the accuracy of facial feature recognition. The improved SNMF method based on
the additive iterative rules and threshold-sparse constraint is abbreviated as ASNMF, which
is adopted to recognize the ORL and CK+ facial datasets, and achieved recognition rate of
96% and 100%, respectively. Meanwhile, from the results of the contrast experiments, it can
be found that the recognition rate achieved by the ASNMF method is obviously higher than
the basic NMF, traditional SNMF, convex nonnegative matrix factorization (CNMF) and
Deep NMF.
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1. Introduction

Facial feature recognition is a complex task due to the variation of human appearance with

age, race, gender and obstacles (such as glasses and masks), which affects the accuracy of
feature extraction, thus reduces the recognition rate. And the more accurate the extracted
facial features are, the higher the recognition accuracy will be. Therefore, the research of
feature extraction methods is critical for the facial recognition. At present, facial feature
extraction methods mainly include the appearance and geometry feature extraction,
deformation and motion feature extraction, global and local feature extraction. Appearance
features include image density, edge, texture and some more distinctive features, and the
common appearance-based feature extraction methods include Local Binary Pattern (LBP)
method [1], Linear Discriminant Analysis (LDA) [2] and directional gradient histogram
method [3]. The appearance feature extraction methods are usually simple and direct, and
can be fused with other methods to improve the performance. Such as in literature [1], the
LBP-based feature is fused with the color information feature, and can measure the similarity
of color images with rich color information. Literature [2] fused the LDA and principal
component analysis methods at rank level using borda count method, thus the recognition
accuracy over individual face representations is significant improved. Geometric method of
feature extraction can recognize facial expressions by measuring facial geometric features,
such as facial reference points, distance and curvature of variable significant areas, etc. The
recognition rate of geometric method alone will decrease when the number of samples
increases, thus the improvements are proposed recently. Such as in literature [4], based on
the geometric feature extraction method, a simple and novel feature descriptor for face
recognition called local diagonal extreme number pattern is proposed. With the new
geometric feature descriptor, the recognition rate can be improved.

Besides the above methods for facial feature extraction, the deformation feature extraction
methods such as the point distributed model [5] and motion module method [6], are also
proposed to extract features based on the deformation of facial sense organs under different
expressions. Meanwhile, the feature extraction method based on motion is also proposed to
judge facial expression according to the movement trend and direction of facial feature
points. The representative method is the optical flow method [7]. These methods are widely
adopted to extract the features of video image sequence to track the facial expression region.
Since the computational complexity of these methods is large, the local feature extraction
methods have attracted much attention in recent years. For local feature extraction method
[8], the five senses are separated and treated differently according to their relative
importance. For example, the changes of eyes and mouth are more obvious than the nasal
region when facial expression changes, so the proportion of the nose can be reduced in the
analysis. Typical methods of local feature extraction are the local principal component
analysis [9] and Gabor wavelet transform [10]. However, local feature extraction methods
can only extract local features, which results in inaccurate accuracy. Therefore, global
feature extraction method is introduced. For global feature extraction method, the scope of
global extraction is all the pixels in the image, and then the whole feature of the image can
be extracted. Usually, the global feature of an image is the reflection of the macro
information of the image, which is advantageous in the representation of the approximate
contour of the facial image, thus it achieved significant performance for facial recognition.
Principal component analysis [11], independent component analysis [12] and nonnegative
matrix factorization (NMF) [13] are the most widely adopted global methods at present,
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among which the NMF method is more explanatory and then suitable for facial feature
extraction than others [14][15].

Nonnegative matrix factorization is realized under the condition that all elements of the
matrix are nonnegative, which is always adopted for dimension reduction and feature
extraction [16][17]. And the improved NMF algorithms have been proposed, such as the
SNMF method [18], CNMF method [19] and Deep NMF method [20]. The SNMF method
considers the redundant information hidden in the complex data by adding the L-norm sparse
constraints in the iteration rules. CNMF method is derived from Semi-NMF [21], and it
replaces the basis matrix with the non-negative convex combination of the original matrix.
And the Deep NMF method is to stack one-layer NMF into multiple layers to learn the
hierarchical relationships among features or hierarchical projections. Among these NMFs,
the SNMF can control the sparsity [22] of the decomposed matrix, thus it can be adopted to
control the sparsity in facial feature extraction to improve the recognition rate. But the
traditional SNMF method is iterated by the multiplicative iteration rules, and the
improvements for the iteration step sizes are not considered. Actually, it is difficult to
improve the recognition accuracy when the iterative step sizes are not appropriate. Therefore,
the new iterative step sizes are proposed in this paper to improve the iterative rules, and then
a new additive sparse nonnegative matrix factorization method can be derived, whose
recognition rate is obviously higher than basic NMF method, SNMF method, CNMF method
and Deep NMF method.

2. Image Preprocessing

The captured facial image will be affected by the performance of the image acquisition
equipment or the change of illumination, which causes the light and shade difference and
noise, and then the target image is different from the actual image data. Therefore, the
acquired facial images should be pre-processed to improve image quality, remove noise and
normalize image size, and are prepared for later feature extraction and classification.

2.1 Conversion of color face to gray image

Since the color image is sensitive to light source, it is easy to be affected by illumination.
Direct use of color image will have negative impact on facial expression recognition. Thus,
the color face will be converted to gray image firstly. The color images in CK+ facial
expression dataset are represented by RGB color model, which can represent pixel value of
an image by three color components, that is, red(R), green(G) and blue(B). The range of
values for each color component is 0-255, and then the gray value can be calculated by the
weighted average value of three color components. Since the human eye is more sensitive to
green and less sensitive to blue, we can give the following weighting formula as Eq. (1) to
get the converted gray value, and the effect is shown in Fig. 1.

Gay =0.29x R+0.578xG+0.114 x B (1)

@) 6iginal color facial image  (b) cnverted gray facial image
Fig. 1. Conversion from facial color image to gray image
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2.2 Face detection and scale normalization

The images in CK+ dataset are captured from videos, which carry lots of interference
information adverse to recognition, such as hair, clothes, subtitle of video, etc. Meanwhile,
uncertainty of face location will also reduce the accuracy of facial feature recognition. Thus,
the face region will be detected first. The adaboost cascade classifier [23] is adopted in this
paper to detect the face of the original face image, get the face part of the image and remove
the complex background, text and other interference information. However, the size
inconsistency of the detected face will also affect feature extraction and classification, thus it
is necessary to normalize the detected faces with the operations of translation, scaling and
rotation. Then the size of the resulting face image is 276x200, and the face is adjusted to the
same angle to achieve face alignment. The results of face detection and scale normalization
are shown in Fig. 2.

EFRETrO0:12:42

(a) Original image (b) The detected and scale normalized face image
Fig. 2. The results of face detection and scale normalization

2.3 Histogram equalization

The uneven illumination causes difficult extracting for the texture features of detected face
and then the accuracy of facial feature recognition will decrease. Therefore, it is necessary to
adopt the histogram equalization method to equalize the illumination, and make pixel values
of image uniformly distributed at each gray scale. Histogram equalization makes the image
gray histogram evenly distributed by stretching the gray scale contrast of samples, and then
the detailed contrast of the image can be enhanced.

The implementation steps of histogram specification are as follows:

(1) Calculating the numbers of pixels of image with different gray values vq, 9=0,1...,L-1

(2) Computing the gray histogram pg=Vvy/v, where v is the total number of pixels for image
to be processed

(3) Calculating cumulative distribution function s, = 2 P,

(4) Calculating the transformed gray scale u=int [(L - s, + 0.5
(5) Calculating the numbers of pixels of the transformed image n,, u=0,1,...,L-1
(6) Calculating the gray histogram of the transformed image p,=v./v, u=0,1,...,L-1.

Histogram equalization was applied to a face image of the CK+ face expression dataset,
and the result is shown in Fig. 3.
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(a) original image  (b) Histogram equalization image
Fig. 3. Face histogram equalization

2.4 Low-frequency information extraction by wavelet transform

The wavelet transform can be adopted to extract the low-frequency feature from an image.
Two-dimensional mother wavelet function ¢ x,y) can be constructed by Eq. (2), and a set

of functions depending on parameter a,b,c is the wavelet basis function.
P X,y )t = \a\’lga(%,%),b,c cRaeR-{0 (2)

The coiflets basis wavelet is a family of orthogonal wavelets based on daubechies wavelet,
whose scale function 4x) and wavelet function ¢x) with N-order vanishing distance

satisfy the following basic properties shown as Eq.(3) and Eq.(4). Meanwhile, coiflets
wavelet not only retains the two-scale relation, orthogonality and smoothness of daubechies
wavelet, but also has a generalized vanishing distance of its scale function 4x), as shown in

Eq. (4).
1) =2y p a2 -1) )

Ax) = 23 (- Py A2 - 1)

M, = [(x = M)"dx)dx = &,,,n = 01 N1 (4)
Here, M, is the vanishing distance of the scale function ¢ x) and py.is the filter coefficient.

To satisfy the Eq.(3), the filter coefficient p, increases from 2N to 3N, and the compact
support of the corresponding scaling function and wavelet function also increases from
[0,2N-1] to [0,3N-1]. In fact, the larger the vanishing moment, the support length is longer,
and the corresponding filter is flatter. Thus, the coiflets wavelet has better compact support
and vanishing moments in both time domain and frequency domain, and the ability to
approximate and reconstruct smooth signal is stronger. Meanwhile, coiflects wavelet has
other good properties, such as orthogonality, time-frequency compact support, smoothness,
fast algorithm of wavelet and so on. Moreover, the scale function of coiflets wavelet has
quasi-interpolation property, so its scale expansion coefficient can be obtained directly by
sampling the signal at a single point, thus avoiding the numerical integration operation
needed in daubechies wavelet analysis. So, the coiflets wavelet transform is choosed to
extract the low-frequent feature, and the extracted low-frequency feature is in the upper left
corner of Fig. 4.

Fig. 4. The extracted low-frequency of coiflets wavelet transform
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3. ASNMF with Improved Additive Iterative Rules

The traditional SNMF method decomposes a nonnegative matrix V of high dimension into
the product of two low-rank nonnegative matrices W and H, and the L1-norm is adopted to
sparse the matrices W and H. The matrix W is the basis matrix and H is the coefficient matrix.
To improve the accuracy of the SNMF method, the new iteration step sizes will be proposed.

3.1 The improved additive iteration rules for SNMF method

The nonnegative matrix V is a linear mixture model with additive noise, and the objective
function of SNMF is defined as Eq. (5).

, 5
J(WH):%;MW*H +a W[ + 4 [H ©

The iterative rules described as Eq.(6) and Eq.(7) can be obtained by using gradient
descent method.

.y (6)
|k_vyk H aV,Vk
H =H, -4 2 )
PN oH,
o . . _—
The 7@\24 and 7;,;]” can be solved by computing the partial derivatives of Eq. (5).

Substituting them into the Eq. (6) and Eq.(7), the iteration rules described as Eq. (8) and Eq.
(9) can be obtained.

W =W Jr,u[(\/HT)Ik 7(\/H_|T)|k-a||k] (8)

Hy =H, + A[(WV), —(WW), - 51, | (9)

Set the improved iteration step sizes # and A as Eq. (10) and Eq. (11), however, the
original iteration step sizes 4 and A’ of traditional SNMF method are described as Eq.
(12) and Eq.(13).

_ W (W), (10)
(V"LHT)ik (WH' +VHT)ik
ﬂ _ ij (V\fv)k] (11)
(W), (WY + WWH),
W (12)
7w,
A= HkJ' (13)
(W),

The x4 and A also satisfy the gradient iteration descending criterion, which can

definitely decrease the target function described as Eq. (5), and the convergence proof will
be given later.

Substituting the new iteration step sizes described as Eq.(10) and Eq.(11) to Eq.(8) and
Eq.(9),respectively, the new additive iteration rules of W and H can be derived as shown in
Eq. (14) and Eq. (15). The new iteration step sizes described as Eq.(10) and Eq.(11) of the
new additive rules as Eq.(14) and Eq.(15) are obviously smaller than the original iteration
step sizes described as Eq.(12) and Eq.(13), thus the searching accuracy during the iteration
process based on Eq.(14) and Eq.(15) is higher than that of the original SNMF method, and
the accuracy can be improved.
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k=VVk+ k(\HT)\k((WT)\k 7(VV.HT)||<-05| |k) (14)
T (W), (WHT), + (HT),)
oo e W) (WV), - (W), -A) (15)

T (W), (WVH), +(WV),)

When the target function as Eq. (5) reaches the minimum value, or the number of
iterations reaches the upper limit, the algorithm is convergent and terminated, and the
optimal W and H can be obtained.

The computational complexity for the new iteration rule as Eq.(14) is O(Nx
(mnk+(mkn+mnk)+mk)), that is O(Nx(mnk+mk)), where N is the number of iterations to
convergence, m is the number of rows of data V, n is the number of columns of data V and k
is the rank of decomposition. And the computational complexity for the new iteration rule as
Eq.(15) is O(N X (kmn+mk*+nk>+kn)). The original iteration rules of traditional SNMF are
described as Eq. (16) and Eq.(17), and the computational complexities of W and H are
O(Nx(mnk+mk)) and O(Nx(kmn+mk*+nk®+kn)), respectively. Therefore, the computational
complexities are unchanged when the traditional multiplicative iteration rules of the SNMF
model is substituted to the new additive iteration rules as Eq.(14) and Eq.(15).

e (VHT)\k;alik (16)
(WH),,
" (WV)kJ 'ﬂl K (17)
ij —Hkl (WV‘H)M

The proposed new SNMF method based on the new additive iterative rules described as
Eq.(14) and Eq.(15) is more precise than the traditional SNMF method due to the smaller
iterative step sizes described as Eq.(10) and Eq.(11), which will result in the higher searching
accuracy and more precise feature.

3.2 Convergence proof

Similar to the NMF method, the objective function J(H) as Eq.(5) of the SNMF can be
described as Eq. (18). Since the second derivative of Eq.(5) for traditional SNMF method is
equal to that of the NMF method, the auxiliary function G(H,H") for convergence proof of
the traditional SNMF can refer to that of NMF described in literature [13], which is
described as Eq. (19) with K(H) = (WW'), / H, .

J(H)=I(H) +(H — H)'VI(HY) + %(H - H)YWWH - H') (18)
QH, H)=J(H) +(H — H) VJ(H') + %(H —H)YKH)(H - H) (19)

Because that (H, - H,), [KH,)-ww|(H, -H,) >0 has been proved in literature [13], the inequality
of gH, H) = J(H) is proved, and then J(H'*) < @H ™ H) < QH',H) = J(H') can be
obtained for the traditional SNMF method, where H™*" is the minimum of auxiliary function
G(H,H"). Thus the J(H) described as Eq.(5) for the traditional SNMF method is proved to be
non-increased. Meanwhile, by iterating the update of H ™ = argmn@H, H), a sequence of
estimates that converge to a local minimum H,, = argnin, J(H) of the objective function
can be obtained, and then the convergence of traditional SNMF is proved.

To further prove the convergence behavior of the improved SNMF method with new
additive rules as Eq.(14) and Eq.(15) proposed in this paper, an auxiliary function of Q(H,H")
should be constructed for the objective function J(H), which satisfies the conditions of Eq.
(20).

QH, H) > J(H),QH, H) = J(H) (20)
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Meanwhile, H*! is also the minimum of auxiliary function Q(H,H’) and can be described
as Eq. (21).

H*™ = argmnQH, H) (21)
From the Eqg. (20) and Eq. (21), we can get the Eq. (22).
J(H™) < QH % H) < QH L H) = I(H) (22)

Then the objective function J(H) can be proved to be non-increasing and convergent based
on the new additive rules as Eq.(14) and Eq. (15). Thus, the construction of the auxiliary
function satisfied Eq. (20) is important.

Refer to Eq.(19), an auxiliary function of Q(H,H") can be constructed for J(H) as Eq.(23).

QH, H)=J(H') +(H - H) VI(H") +%(H —HYEH)(H-H) (23)

Where E(H) = (WWH), / Hy) (WY + WWH), 1 (WV),) (24)
Since the inequality of QH,H') > J(H) has been proved, we only need prove
QH,H) > @H,H),andthen QH, H") > J(H) can be proved.
Based on Eq. (23) and Eq. (19), we only need prove E(H') > K(H') = (WWH'), / H, ,
then H, H') > @H, H') can be proved.
From Eqg. (24), we can derive as following,
E(HO){(WWH), [ H ) (WY + WWA), [ (WV),)
= ((WWH'), [ H)(L+(WWH ), [ (WV), ) = (WWH), [ H =K(H)
From the Eq. (25), we can get QH, H') > QH, H') > J(H), and then J(H) with the new
iteration rules is proved to be non-increasing and convergent based on the updating rule of
Eq. (21), that is, the convergence of the new additive iteration rules for new SNMF method
can be proved.

Based on the Eq. (21), the iteration rule of H can be derived as Eq. (26), that means Eq.(15)
can be obtained.

(25)

1 : (WV),  (WV),, —(WW'), -4l ) (26)
H,™" =argmnQH, H) = H, +H, . g Nt N
kj gH q ) kj kj (WV‘Ht )kj ((va_lt )kj + (V\}'V)kJ )
Similarly, the iteration of W described as Eq. (27) can be derived, that means Eq. (14) can
be obtained.

1 _ . _ (\A-'T)ik ((VHT)ik _(WFHT)ik_alik) (27)
W = argmaQ@UW) = W Gy (W, R,

3.3 Threshold sparsity for the basis matrix

To further improve the recognition rate, the redundant information in the feature data
represented by the basis matrix W can be further reduced. Thus the threshold judgment
strategy is adopted to increase the sparsity of the basis matrix W of the improved additive
SNMF method, and then the recognition accuracy can be further improved. The threshold
judgment is applied to the basis matrix W in additive iteration process, that is, a threshold is
selected to reset the value of the basis matrix W while using the Eq. (14) and Eq. (15) for
updating the W and H. When the W is produced each iteration, each data of column in the
basis matrix W is reset according to the threshold. If the data is greater than the threshold, it
is set to value of one, otherwise the data is set to zero. The basis matrix W is sparsed to 0 and
1 matrix, which can make the weight of the important feature larger, and the weight of the
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less important feature smaller, and then the facial features become more concentrated and
easy to be extracted, thus, the accuracy can be improved.

Threshold judgment is introduced from the initial iteration, and the initial values of W
matrix are random values between 0 and 1, thus the threshold can only be set between 0 and
1. From the initial iteration, if the threshold is a large humber between 0 and 1, only a small
number of values in W matrix will exceed the threshold, and most of the other values of W
matrix will be set to 0, resulting in most of the original useful feature information in W
matrix will be set to zero. After several iterations, most of the values in W matrix are 0,
resulting in serious loss of features, and then the recognition accuracy will be greatly reduced.
Thus, the threshold can’t be large number between 0 and 1. A small threshold can ensure that
redundant information is eliminated, while retaining most of the useful feature information.
And the threshold of 0.01 can get better results in this paper.

The above-mentioned improved additive SNMF method based on the new additive
iterative rules and threshold judgment is named ASNMF method. To verify the effectiveness
of the new method, the ASNMF, basic NMF, SNMF, CNMF and Deep NMF are applied on
the ORL and CK+ face databases respectively, and then the basis matrix images extracted
from the training samples, called “feature faces,” can be obtained and shown in Fig. 5 (a)-(e),
respectively. As can be seen from Fig. 5, the expression contours of “feature faces” of W
matrix obtained by ASNMF method based on the new additive iterative rules proposed in
this paper are clearer than other four NMF methods, that means the ASNMF method can
express the expression features more clearly.

(a) basic NMF

- L
(d) Deep NMF (e) ASNMF
Fig. 5. Feature faces of the basis matrices obtained by the five NMF methods

4. Classification Based On SVM

The classifier should be selected after facial feature extraction. Facial feature classifiers
include hidden Markov model (HMM), neural network, support vector machine (SVM),
adaboost algorithm and K nearest neighbor algorithm (KNN), etc. SVM classifier has good
generalization ability, and by which the strict bound of generalization ability of the model
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can be given, which is not available in other learning machines. Meanwhile, compared with
other methods, the establishment of SVM classifier requires less prior intervention. In fact,
the less human intervention, the more objective the classification results are. Meanwhile,
even if the sample is insufficient, SVM also can achieve accurate recognition. Therefore,
SV M classifier is adopted to recognize the facial features in this paper.

SVM can classify the facial features of multiple categories with the "one-to-one" and
"one-to-many" strategies. Since the results of "one-to-one" strategy are more accurate, it is
adopted in SVM in this paper. The M classes of the samples can be divided into two
categories respectively, and then M(M-1)/2 classifiers were constructed. The categories of
facial expressions in the CK+ dataset is 8, meanwhile, the categories of faces in the ORL
database is 40, and then the "one to one" strategy can be adopted to construct 28 classifiers
for CK+ dataset and 780 classifiers for ORL dataset, respectively. And from the following
experimental results, the "one-to-one" SVM classifier can correctly classify and recognize
facial feature extracted by the ASNMF method for ORL dataset and CK+ dataset,
respectively, that is, it can correctly recognize the same expression of different people, and
also can recognize the same people of different facial expression.

5. Experimental Results and Analysis

To illustrate the validity of the proposed ASNMF method, two datasets are chosen for
experiments respectively, which are CK+ dataset and the ORL dataset. The CK+ dataset is
the extended Cohn-Kanade data provided by the Carnegie Mellon University, which is
composed by the image sequences with the emotion labels. The eight emotion labels of CK+
dataset are anger, contempt, disgust, fear, happiness, neutrality, sadness and surprise. In
experiments, each expression category contains 40 images of different people, and then there
are 320 images of the total eight expressions. The images in CK+ dataset were digitized into
640x480 pixel arrays with 8-bit gray-scale or 24-color values. And there are 20 training
samples for each expression, that is, there are 160 training samples for the eight expressions,
meanwhile, there are 20 test samples for each expression and 160 test samples for eight
expressions. The facial expressions and details of each person in the dataset vary in varying
degrees. The facial expression posture is also different, and variation of the depth rotation
angle and plane rotation angle can reach 20 degrees and the scale of expression reaches 10%.
Another dataset in experiments is the ORL dataset provided by Cambridge University. There
are ten different images of each of 40 distinct subjects. For some subjects, the images were
taken at different times, varying the lighting, facial expressions (open / closed eyes, smiling /
not smiling) and facial details (glasses / no glasses). The size of each image is 92x112 pixels
with 8-bit gray-scale values.

To verify the effectiveness of the ASNMF method by comparison experiments, several
NMF methods such as basic NMF, traditional SNMF, CNMF, Deep NMF and the ASNMF
method, are all adopted to extract and recognize facial features for CK+ dataset and ORL
dataset, respectively. And the results of recognition rates for five NMF methods with
different decomposition rank k for CK+ dataset and ORL dataset are shown in Fig. 6 and Fig.
7, respectively.

As can be seen from Fig. 6, for CK+ dataset, the highest recognition rate can reach 100%
by adopting the ASNMF method proposed in this paper when k is less than 40. Secondly, the
recognition rate of the traditional SNMF method reaches 69.375%, which adopts the
L1-norm to sparse the basis matrix and coefficient matrix, and the recognition rate decreases
with the increase of k value. Next, the recognition rate of Deep NMF method reaches
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61.875% and the CNMF is adopted to extract features, whose recognition rate only reaches
16.25%. Finally the recognition rate with the basic NMF features only reaches 12.5%, and
the recognition rate can’t be effectively improved by changing the value of rank k. Therefore,
the highest recognition rate of ASNMF method is 30.625% higher than that of SNMF
method, 38.125% higher than Deep NMF, 83.75% higher than CNMF and 87.5% higher
than basic NMF.

09 | .
.
08 | ®, Deep NMF
0.7
06 BN\
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é 05
£ r ~
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S ooa |

03 | ~

02 |
Paa,
--------------------------------------------------
0.1 I L L L L I L I L
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20 40 60 80 100 120 140 160 180 200 220

k

Fig. 7. Comparison of the recognition rate of the five NMF methods for ORL dataset

As can be seen from Fig. 7, for the ORL dataset, the recognition rate reaches 96% by
adopting the ASNMF method proposed in this paper. Meanwhile, the recognition rate of
Deep NMF reaches 91%. The recognition rates of CNMF reaches 67% and the recognition
rate of SNMF reaches 30%. However, the recognition rate of basic NMF only reaches 3.5%.
Therefore, the highest recognition rate of the ASNMF method is 5% higher than Deep NMF,
29% higher than CNMF, 66% higher than SNMF and 92.5% higher than basic NMF.

The recognition rate of ASNMF method based on new additive and sparse iteration rules
is higher than other NMF methods because that the search accuracy of the iteration process
based on the new smaller iteration step sizes is higher, which results in higher recognition
accuracy. Moreover, the threshold judgment is adopted, which make the feature data
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obtained by the new additive iterative rules sparser and more concentrated than the feature
data obtained by the traditional multiplicative iterative rules in other four NMF methods.
Since the extracted facial feature is more concentrated and easier to recognize, a higher
recognition rate based on the new additive and sparse iterative rules can be achieved. High
recognition rate means accurate feature extraction, so the feature extracted by ASNMF
method is more accurate than other methods, and then the error of the reconstruction based
on the feature basis matrix of ASNMF is smaller.

Based on ASNMF method, one facial feature recognition software is realized, which can
recognize the facial features of CK+ dataset and ORL dataset, respectively. To achieve the
highest recognition rate 100% for CK+ dataset, the value of decomposition rank k adopts 20,
and for ORL dataset, the value of decomposition rank k changes to 175, and then the highest
recognition rate 96% can be achieved. Meanwhile, the categories of eight facial expressions
of CK+ dataset are numbered from 1 to 8, for instance, the contempt expression is numbered
as 8, the disgust expression is numbered as 6, the happy expression is numbered as 2 and the
surprise expression is numbered as 3, and so on. Similarly, the categories of 40 persons for
ORL dataset are numbered from 1 to 40.

The experimental results for CK+ dataset based on ASNMF method are shown in Fig. 8 -
Fig. 11. It can be seen that the various expressions can be correctly recognized respectively,
for example, contempt expression is correctly recognized as category 8 shown in Fig. 8,
disgust expression is correctly recognized as category 6 shown in Fig. 9, happy expression is
correctly recognized as category 2 shown in Fig. 10, and surprise expression is correctly
recognized as category 3 shown in Fig. 11, and so on. Meanwhile, from the Fig. 8 to Fig. 11,
it can be found that the different people with the same expression can also be correctly
recognized. And the experimental results for ORL dataset are shown in Fig. 12-Fig. 15.
From Fig. 12 and Fig. 13, it can be seen that ASNMF method can recognize the different
expressions belonging to the same person. Meanwhile, ASNMF method can recognize the
person wearing glasses or not as shown in Fig. 14, and also can recognize the person whose
eyes open or closed as shown in Fig. 15.

aaaaaaa

nnnnnnnnnnnnnnnnnnn

recognize open recognize.

ccccccc

nnnnnnnnnn

open || recognize open recogrize.

Fig. 10. Happy expression correctly recognized. Fig. 11. Surprise expression correctly recognized.
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ccccccccccccc

nnnnnnnnnnnnnnnnnnn

Fig. 12. Different facial expressions of same person Fig. 13. Different facial expressions of a person

cccccccccccccc

nnnnnnnnnnnnnnnnnnn

recognize open recognize

Fig. 14. Person wearing glasses or not. Fig. 15. Person whose eyes open or closed.

6. Conclusion

In this paper, a new SNMF method with improved additive and threshold-sparse iterative
rules, named ASNMF method, is proposed to improve the accuracy of facial feature
extraction and recognition. Firstly, the color face images in dataset are converted to gray
images to avoid the influence of illumination. Then the adaboost cascade classifier and scale
normalization are adopted to detect the face region and align faces, respectively. Meanwhile,
histogram specification is adopted to enhance the detailed contrast of the expression image,
and the low-frequency information of expression image is extracted to reduce noises of face
images by coiflets wavelet transform. Then the new iterative step sizes are proposed to
improve the traditional iterative rules for SNMF method, which are smaller than the
traditional iterative step sizes, and can improve the recognition accuracy. By analyzing the
time complexity, we find that the improved iterative rules based on the new step sizes will
not change the computational complexities of the SNMF. Then we proof the convergence of
the improved SNMF method with the new iterative rules. To further reduce the redundant
information in the feature data and achieve higher recognition accuracy, the threshold-sparse
strategy is adopted to sparse the basis matrix W. Finally, the SVM classifier is chosen to
identify the extracted facial features.

To verify the effectiveness, the ASNMF method is adopted to recognize the CK+
expression dataset and ORL face dataset respectively, and from the results of the
comparative experiments with different k on the feature recognition rate, it can be shown that
ASNMF method proposed in this paper can significantly improve the recognition rate for the
two datasets, and achieve 100% and 96% rate for CK+ and ORL, respectively. For CK+
dataset, the highest recognition rate of ASNMF method is 30.625%, 38.125%, 83.75% and
87.5% higher than that of SNMF method, Deep NMF, CNMF and basic NMF, respectively.
And for ORL dataset, the highest recognition rate of ASNMF method is 5%, 29%, 66% and
92.5% higher than that of Deep NMF, CNMF, SNMF and basic NMF, respectively.
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Meanwhile, from the simulation results of the facial feature recognition software based on
ASNMF, it can be found that the ASNMF method can recognize the different people with
the same expression and the different expressions belonging to the same person.
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